3.41 \(\int \frac{\sin (a+b x)}{\sqrt{c+d x}} \, dx\)

Optimal. Leaf size=117 \[ \frac{\sqrt{2 \pi } \sin \left (a-\frac{b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{\sqrt{b} \sqrt{d}}+\frac{\sqrt{2 \pi } \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{\sqrt{b} \sqrt{d}} \]

[Out]

(Sqrt[2*Pi]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + (Sqrt[2
*Pi]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(Sqrt[b]*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.132519, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {3306, 3305, 3351, 3304, 3352} \[ \frac{\sqrt{2 \pi } \sin \left (a-\frac{b c}{d}\right ) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b} \sqrt{c+d x}}{\sqrt{d}}\right )}{\sqrt{b} \sqrt{d}}+\frac{\sqrt{2 \pi } \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{\sqrt{b} \sqrt{d}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]/Sqrt[c + d*x],x]

[Out]

(Sqrt[2*Pi]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + (Sqrt[2
*Pi]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(Sqrt[b]*Sqrt[d])

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{\sin (a+b x)}{\sqrt{c+d x}} \, dx &=\cos \left (a-\frac{b c}{d}\right ) \int \frac{\sin \left (\frac{b c}{d}+b x\right )}{\sqrt{c+d x}} \, dx+\sin \left (a-\frac{b c}{d}\right ) \int \frac{\cos \left (\frac{b c}{d}+b x\right )}{\sqrt{c+d x}} \, dx\\ &=\frac{\left (2 \cos \left (a-\frac{b c}{d}\right )\right ) \operatorname{Subst}\left (\int \sin \left (\frac{b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{d}+\frac{\left (2 \sin \left (a-\frac{b c}{d}\right )\right ) \operatorname{Subst}\left (\int \cos \left (\frac{b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{d}\\ &=\frac{\sqrt{2 \pi } \cos \left (a-\frac{b c}{d}\right ) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right )}{\sqrt{b} \sqrt{d}}+\frac{\sqrt{2 \pi } C\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }} \sqrt{c+d x}}{\sqrt{d}}\right ) \sin \left (a-\frac{b c}{d}\right )}{\sqrt{b} \sqrt{d}}\\ \end{align*}

Mathematica [C]  time = 0.0538371, size = 121, normalized size = 1.03 \[ -\frac{e^{-\frac{i (a d+b c)}{d}} \left (e^{2 i a} \sqrt{-\frac{i b (c+d x)}{d}} \text{Gamma}\left (\frac{1}{2},-\frac{i b (c+d x)}{d}\right )+e^{\frac{2 i b c}{d}} \sqrt{\frac{i b (c+d x)}{d}} \text{Gamma}\left (\frac{1}{2},\frac{i b (c+d x)}{d}\right )\right )}{2 b \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]/Sqrt[c + d*x],x]

[Out]

-(E^((2*I)*a)*Sqrt[((-I)*b*(c + d*x))/d]*Gamma[1/2, ((-I)*b*(c + d*x))/d] + E^(((2*I)*b*c)/d)*Sqrt[(I*b*(c + d
*x))/d]*Gamma[1/2, (I*b*(c + d*x))/d])/(2*b*E^((I*(b*c + a*d))/d)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 99, normalized size = 0.9 \begin{align*}{\frac{\sqrt{2}\sqrt{\pi }}{d} \left ( \cos \left ({\frac{da-cb}{d}} \right ){\it FresnelS} \left ({\frac{\sqrt{2}b}{\sqrt{\pi }d}\sqrt{dx+c}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) +\sin \left ({\frac{da-cb}{d}} \right ){\it FresnelC} \left ({\frac{\sqrt{2}b}{\sqrt{\pi }d}\sqrt{dx+c}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{b}{d}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)/(d*x+c)^(1/2),x)

[Out]

1/d*2^(1/2)*Pi^(1/2)/(b/d)^(1/2)*(cos((a*d-b*c)/d)*FresnelS(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d)+si
n((a*d-b*c)/d)*FresnelC(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d))

________________________________________________________________________________________

Maxima [C]  time = 1.77746, size = 714, normalized size = 6.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/4*(((-I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt(pi)*cos(-1/4*pi + 1
/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/s
qrt(d^2))) + sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*cos(-(b*c - a*d)/d) - (s
qrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*cos(-1/4*pi + 1/2*arctan2(0,
b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) +
 I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*sin(-(b*c - a*d)/d))*erf(sqrt(d*x
+ c)*sqrt(I*b/d)) + ((I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*co
s(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*a
rctan2(0, d/sqrt(d^2))) + sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*cos(-(b*c -
 a*d)/d) - (sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*cos(-1/4*pi + 1/
2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/
sqrt(d^2))) - I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*sin(-(b*c - a*d)/d))*
erf(sqrt(d*x + c)*sqrt(-I*b/d)))/(d*sqrt(abs(b)/abs(d)))

________________________________________________________________________________________

Fricas [A]  time = 1.71886, size = 269, normalized size = 2.3 \begin{align*} \frac{\sqrt{2} \pi \sqrt{\frac{b}{\pi d}} \cos \left (-\frac{b c - a d}{d}\right ) \operatorname{S}\left (\sqrt{2} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) + \sqrt{2} \pi \sqrt{\frac{b}{\pi d}} \operatorname{C}\left (\sqrt{2} \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) \sin \left (-\frac{b c - a d}{d}\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(2)*pi*sqrt(b/(pi*d))*cos(-(b*c - a*d)/d)*fresnel_sin(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d))) + sqrt(2)*pi*
sqrt(b/(pi*d))*fresnel_cos(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-(b*c - a*d)/d))/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin{\left (a + b x \right )}}{\sqrt{c + d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)**(1/2),x)

[Out]

Integral(sin(a + b*x)/sqrt(c + d*x), x)

________________________________________________________________________________________

Giac [C]  time = 1.12505, size = 227, normalized size = 1.94 \begin{align*} -\frac{\frac{i \, \sqrt{2} \sqrt{\pi } d \operatorname{erf}\left (-\frac{\sqrt{2} \sqrt{b d} \sqrt{d x + c}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{i \, b c - i \, a d}{d}\right )}}{\sqrt{b d}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}} - \frac{i \, \sqrt{2} \sqrt{\pi } d \operatorname{erf}\left (-\frac{\sqrt{2} \sqrt{b d} \sqrt{d x + c}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac{-i \, b c + i \, a d}{d}\right )}}{\sqrt{b d}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*(I*sqrt(2)*sqrt(pi)*d*erf(-1/2*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((I*b*c - I
*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)) - I*sqrt(2)*sqrt(pi)*d*erf(-1/2*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)
*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)))/d